Photocatalysis for water oxidation by Fe_2O_3 nanoparticles embedded in clay compound: correlation between its polymorphs and their photocatalytic activities

Seiji Kakuta · Toshiyuki Abe

Received: 19 November 2008/Accepted: 3 March 2009/Published online: 25 March 2009 © Springer Science+Business Media, LLC 2009

Abstract Iron oxide (Fe₂O₃) nanoparticles of distinct polymorphs (i.e., α and amorphous phases) were prepared in montmorillonite (MT) particularly with three types of methods (i.e., calcining, hydrothermal reaction, and hydrolysis) and used as photocatalysts for the oxidation of water to O_2 . Although α -Fe₂O₃ has usually been applied to a photocatalysis system [employing the saturated loading of α -Fe₂O₃ (25 wt%) in MT], this study first showed that amorphous Fe₂O₃ has similar photocatalysis ability to α -Fe₂O₃ in terms of water oxidation. Moreover, irrespective of the types of polymorphs, their photocatalyses were dependent on the loading amount of Fe₂O₃ in MT; that is, the O₂ amount increased with the amount of the photocatalyst employed until the loading amount reached ca. 3 wt%, and decreased in the larger loading amount. In this article, the reason why such an optimal photocatalysis condition appears was considered in terms of kinetic aspects.

Introduction

Great efforts have been made to prepare an active photocatalyst for water splitting and pollutant decomposition [1]. Currently, photocatalyst fabrications are passively conducted particularly in view of an efficient uptake of visible-

S. Kakuta \cdot T. Abe (\boxtimes)

S. Kakuta

light energy into output. Among the conventional photocatalysts working under visible-light irradiation, iron oxide (Fe₂O₃) has been attracting attention as a potential photocatalyst because it is stable, safe, and inexpensive [2, 3]. Its various types of polymorphs such as α , β , γ , and amorphous have been recognized; however, only α -Fe₂O₃ has usually been used as photocatalyst [4–7]. The photocatalytic activity of α -Fe₂O₃ was found to depend on its particle size [6, 7]. This is because its photogenerated carriers have a shortdiffusion length (<20 nm [4, 8]). Therefore, the study of the fabrication of fine-Fe₂O₃ particles has been conducted with an aim to establish an efficient photocatalysis system. Recently, Grätzel and colleagues [9] have reported the photocatalytic oxidation of water by dendritic α -Fe₂O₃ nanoparticles of 10 to 20 nm diameter. The use of a clay compound as a photocatalyst supporter was also effective for fabricating nanostructured α -Fe₂O₃ [10, 11]; the compound suppressed the nanoparticle aggregation. It has been known that α -Fe₂O₃ embedded in clay exhibits efficient photocatalytic activity for the decomposition of acetic acid into methane (called the photo-Kolbe reaction), which is superior to neat Fe_2O_3 in the photocatalytic activity [12, 13].

In general, an amorphous compound has not so far been applied to photocatalysis system. This is attributed to low carrier mobilities in amorphous compounds, resulting in inefficient photocatalysis. However, a few examples have recently been reported on amorphous photocatalysts (such as TiO₂ and Ta₂O₅) capable of water splitting [14, 15]. For instance, Domen and colleagues [15] have shown that the photocatalytic activity of amorphous Ta₂O₅ is higher than that of crystallized Ta₂O₅. The effectiveness of amorphous Ta₂O₅ originates from its mesoporous structure (pore size, ca. 1.8 nm; thickness, 4.4 nm) that reduces carrier recombination. With regard to amorphous Fe₂O₃, its photocatalytic activity has not been studied in detail. Amorphous Fe₂O₃ can

Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan e-mail: tabe@cc.hirosaki-u.ac.jp

Aomori Industrial Research Center, 4-11-6, Daini-Tonyamachi, Aomori 030-0113, Japan

Scheme 1 Energy levels of Fe_2O_3 as well as the reactions concerned in the present study. VB and CB denote the valence and conduction bands, respectively

be prepared through aggregation of precursors [i.e., Fe(III)hydroxy complexes such as $\text{Fe}^{\text{III}}(\text{OH})^{2+}$ and $\text{Fe}^{\text{III}}(\text{OH})^{+}_{2}$] under weakly acidic and alkaline conditions, which usually results in the formation of large particles [16, 17]. Such an amorphous species is known as hydrous ferric oxide (HFO) (Fe₂O₃ · *x*H₂O), having a similar chemical structure to α -Fe₂O₃; thus, amorphous Fe₂O₃ may also be photocatalytically active. That is, an efficient photocatalysis system of amorphous Fe₂O₃ may be created, particularly by controlling the particle size at the nanometer scale.

In this study, Fe₂O₃ was synthesized in montmorillonite (MT) using different preparation methods, through which the authors successfully fabricated the nanoparticles of distinct polymorphs (i.e., α and amorphous phases). The photocatalytic activities of Fe₂O₃ loaded in MT were investigated through the multielectron transfer oxidation of water to O₂ (Scheme 1), where the photocatalysis of Fe₂O₃ for O₂ evolution is examined in terms of the types of its polymorph and loading amount in the clay. As a result, this study involved the first finding that the photocatalysis ability of amorphous Fe₂O₃ is comparable to that of α -Fe₂O₃. This article also describes the factors affecting the photocatalysis of Fe₂O₃ for water oxidation.

Experimental

Purification of MT, and preparation of Na⁺-type MT

An aliquot of 20 g of bentonite clay (Nihon Koken, Tsugaru-2) was introduced into 0.9 dm^3 of deionized water; subsequently, 0.1 dm^3 of 3% hydrogen peroxide solution was added into the suspension for removing

organic matters from the clay. The suspension was stirred for 5 h, after which MT was isolated from bentonite by means of centrifugation. The obtained MT was soaked in 1.0 dm^3 of 1 mol dm⁻³ NaCl solution, through which the cation-exchange sites in the MT were replaced by Na⁺ (this treatment was repeated thrice). The resulting Na⁺type MT was washed with deionized water and dried at 100 °C. As a result, ca. 7 g of Na⁺-type MT was obtained.

Preparations of photocatalyst embedded in MT

 Fe_2O_3 was loaded into Na⁺-type MT using three types of methods (i.e., calcining, hydrothermal reaction, and hydrolysis).

Method a: Trinuclear acetato-hydroxo iron (III) nitrate ([Fe₃O(OCOCH₃)₇OH · 2H₂O]NO₃) was prepared from iron(III) nitrate enneahydrate (Kanto Chemical) and acetic anhydride (Wako Pure Chemical), according to a previous procedure [10]. An aqueous complex solution $(0.1 \text{ mol } \text{dm}^{-3})$ was prepared and quickly dropped into a suspension (0.1 dm³) of 1 wt% Na⁺-type MT with stirring (the additive amount of the complex solution changes with the loading amount of Fe₂O₃ in MT), after which the mixture was stirred for 5 h at room temperature. The product was washed with deionized water and dried on a glass plate at room temperature, followed by calcining at 400 °C under air (for 10 h). The saturated amount of Fe₂O₃ in MT was ca. 25 wt%. The Fe₂O₃ loaded in MT through calcining is denoted as CL-Fe₂O₃/ MT. As a reference, neat Fe_2O_3 (denoted as CL-Fe₂O₃) was also prepared according to the above-mentioned procedure and used as-prepared.

Method b: The $[Fe_3O(OCOCH_3)_7OH \cdot 2H_2O]NO_3$ solution (0.1 mol dm⁻³) was dropped into a suspension of 1 wt% Na⁺-type MT with stirring, followed by continuous stirring for 5 h (the additive amount of the complex solution changes with the Fe₂O₃ amount in MT, similar to method a). The resulting mixture solution was put into a gas-tight glass vessel and aged for 3 days in an oven at 120 °C. The resulting product (denoted as HT-Fe₂O₃/MT) was washed with deionized water and dried at room temperature. As a reference, neat HT-Fe₂O₃ was also prepared by means of the hydrothermal reaction with 0.5 mol dm⁻³ of aqueous $[Fe_3O(OCOCH_3)_7OH \cdot 2H_2O]NO_3$ solution.

Method c: An aqueous solution of $Fe(NO_3)_3 \cdot 9H_2O$ (0.1 mol dm⁻³) was dropped into 0.1 dm³ of 1 wt% Na⁺⁻ type MT suspension with stirring (the additive amount of the complex solution was controlled with the Fe₂O₃ amount in MT, similar to the methods a and b), and the resulting mixture solution was continuously stirred for 5 h at room temperature. The resulting Fe^{III}-type MT was first washed with deionized water in order to remove nitrate and thereafter put back into deionized water. The formation of HFO in MT (HFO/MT) was carried out through hydrolysis, wherein 0.1 dm³ of an aqueous NaOH solution (1 mol dm⁻³) was added into 0.1 dm³ of the Fe^{III}-type MT suspension. The resulting suspension (conc., 10.5 g dm⁻³) of 5 wt% HFO/MT was washed with deionized water, and the product was stored in deionized water at room temperature. The saturated amount of HFO/MT was ca. 8 wt%.

Characterization of photocatalysts

The loading amount of Fe₂O₃ (or HFO) in MT was determined by thermogravimetry (Rigaku, TG-8120) at 400 °C under air (for 10 h). The specific surface area of the photocatalyst was determined using the Brunauer-Emmet-Teller method (Shimadzu-Micromeritics, FlowSorb II 2300). The polymorph of the photocatalyst part embedded in MT was identified by electron diffraction. A transmission electron microscope (TEM; Hitachi, H-8000) was operated at 200 kV for obtaining the sample images. For recording TEM images, ca. 0.1 g dm^{-3} of the suspension of the photocatalyst embedded in MT was prepared. A $1.0 \times 10^{-5} \text{ dm}^3$ portion of the suspension was dropped onto a microgrid supported on a copper grid mesh (Nisshin EM, MJD02A) and dried at room temperature. A diffuse reflectance spectrum was measured using a UV-Vis spectrophotometer (JASCO, V-570) equipped with an integrating sphere (JASCO, ISN-470). For the measurement of a diffuse reflectance spectrum of Fe₂O₃ (or HFO) embedded in MT, 1 wt% of the suspension of photocatalyst (i.e., 3 wt% CL-Fe₂O₃/MT, 3 wt% HT-Fe₂O₃/MT, or 3 wt% HFO/MT) was prepared. A 1×10^{-3} dm³ portion of the suspension was filtered. The photocatalysts were dried at room temperature and used as the samples for diffuse reflectance spectral measurement. The size distributions of neat HT-Fe₂O₃ particles were also measured by a dynamic light-scattering particle-size analyzer (HORI-BA, LB-550), in addition to TEM imaging.

Photocatalytic experiments

The photocatalytic water oxidation was conducted in an aqueous Ag_2SO_4 solution [30 mmol dm⁻³ (pH = 6.2)] containing a known amount of a photocatalyst within an Ar atmosphere. The amount of the photocatalyst embedded in MT was varied while maintaining the amount of MT constant (20 mg). A 150-W halogen lamp was used as a light source (light intensity, 357 mW cm⁻²) under typical conditions. For measuring the action spectrum for O₂ evolution, a tunable pulse laser (Hamamatsu Photonics, L5996) was used as the monochromatic light source (light intensity, 100 mW cm⁻²). The light intensity was measured using a power meter (Gentec, PSV-3103V2). Gaseous products were analyzed by a thermal conductivity

detector gas chromatograph (Shimadzu, GC-2010) with a capillary column (Molecular Sieve 5A) and Ar carrier gas.

Results and discussion

The structural characteristics of CL-Fe₂O₃/MT, HT-Fe₂O₃/MT, and HFO/MT were identified in terms of TEM images, specific surface areas, and diffuse reflectance spectra.

Figure 1 shows the TEM images of Fe₂O₃ (or HFO) embedded in MT and the corresponding electron diffraction patterns (inset) for different loading amounts of the photocatalysts. The d-spacing data obtained from electron diffraction spots are also summarized in Table 1. Figure 2 shows the size distributions of Fe₂O₃ and HFO particles, based on the TEM observations. The average size of Fe₂O₃ particles in 3 and 25 wt% CL-Fe₂O₃/MT was ca. 20 nm (Figs. 1a, b and 2a). The diffraction pattern of 25 wt% CL-Fe₂O₃/MT indicated that the polymorph of Fe₂O₃ is assignable to the α phase (Fig. 1a, Table 1) [18]. However, for <5 wt% of the loading amount (Fig. 1b), the electron diffraction spots from crystalline Fe₂O₃ were not observed, where the resulting diffraction pattern is consistent with that of the MT particles (Table 1). Figure 1b evidently exhibits that an amorphous phase of CL-Fe₂O₃ can be formed under the lower loading condition. Although the saturated loading of CL-Fe₂O₃ in MT (i.e., 25 wt% of CL-Fe₂O₃/MT) has usually been employed for photocatalyst applications [12, 13], the present result reveals that the polymorphs of CL-Fe₂O₃ depend on its loading amount.

In 3 and 25 wt% HT-Fe₂O₃/MT, the size of Fe₂O₃ particles was ca. 60 nm (Figs. 1c, d and 2b). The electron diffraction patterns were indicative of the α phase of Fe₂O₃, irrespective of the loading amount (Fig. 1c, d, Table 1). HFO has been recognized as amorphous Fe₂O₃ [16]. As depicted in Fig. 1e and f, and Table 1, the polymorph of HFO was characterized to be the amorphous phase through the electron diffraction patterns, similar to the 3 wt% CL-Fe₂O₃/MT (cf., the particle size in 3 and 8 wt% HFO/MT was realized to be ca. 30 nm, Fig. 2c). The results shown in Fig. 1 exhibit that the polymorphs of Fe₂O₃ change with the preparation procedures.

The specific surface area of Fe₂O₃ (or HFO) in MT was found to increase with the loading amount from 169 m² g⁻¹ (1 wt%) to 329 m² g⁻¹ (25 wt%) in CL-Fe₂O₃/MT, from 142 m² g⁻¹ (1 wt%) to 298 m² g⁻¹ (25 wt%) in HT-Fe₂O₃/MT, and from 156 m² g⁻¹ (1 wt%) to 223 m² g⁻¹ (8 wt%) in HFO/MT (Fig. 3). This may exhibit that the aggregation of Fe₂O₃ (or HFO) can be suppressed by using an MT matrix as a supporter.

The diffuse reflectance spectra of Fe_2O_3 and HFO are shown in Fig. 4a. The absorption edge of CL-Fe₂O₃/MT, HT-Fe₂O₃/MT, and HFO/MT was at a wavelength of ca. Fig. 1 TEM images and electron diffraction patterns (*inset*) of photocatalyst particles in MT. a 25 wt% CL-Fe₂O₃/ MT, b 3 wt% CL-Fe₂O₃/MT, c 25 wt% HT-Fe₂O₃/MT, d 3 wt% HT-Fe₂O₃/MT, e 8 wt% HFO/MT, and f 3 wt% HFO/MT

600 nm. From the $\alpha^{1/2}$ versus *hv* plots (Fig. 4b), the band gap energies of CL-Fe₂O₃/MT, HT-Fe₂O₃/MT, and HFO/MT were calculated to be 2.04, 2.09, and 2.02 eV, respectively. The band gap of α -Fe₂O₃ (in the absence of clay) has been reported to be 2.0–2.3 eV [19, 20], being in good agreement with the resulting values in this study. The chemical structure of amorphous Fe₂O₃ is essentially similar to that of α species (cf., the O^{2–} ion in amorphous

Fe₂O₃ occupies the octahedral site of Fe³⁺ ion, in the same manner as α -Fe₂O₃) [21]; moreover, the absorption at around 600 nm can be induced through d–d transition in an Fe³⁺ ion [20, 22]. Therefore, it is reasonable that the band gap energies of Fe₂O₃ and HFO are independent of their polymorphs.

The photocatalytic activities of Fe_2O_3 and HFO for water oxidation were investigated in the presence of

Na ⁺ -type MT ^a	α -Fe ₂ O ₃ ^b	CL-Fe ₂ O ₃ /MT (wt%)		HT-Fe ₂ O ₃ /MT (wt%)		HFO/MT (wt%)	
		25	3	25	3	8	3
0.447		0.442	0.449	0.446	0.446	0.446	0.448
	0.369	0.366		0.371	0.370		
0.334		0.335	0.336	0.333	0.335	0.335	0.333
0.323		0.321	0.335	0.321	0.324	0.322	0.324
	0.270	0.266		0.269	0.268		
	0.252	0.252		0.251	0.251		
	0.221	0.221		0.220			
	0.184	0.184		0.185	0.186		
	0.170	0.168		0.168			

Table 1 D-spacing obtained from electron diffraction pattern

The measurement error for electron diffraction analysis was ± 0.004 nm

^a D-spacing of Na⁺-type MT was determined by means of X-ray powder diffraction

^b From Ref. [18]

 Ag_2SO_4 (electron acceptor), in terms of the preparation methods of Fe_2O_3 and HFO (i.e., the types of polymorph) and the loading amount in MT.

First, the photocatalytic water oxidation by Fe_2O_3 (or HFO) was performed with and without an MT matrix. Table 2 shows the amount of the O_2 produced in each system. Irrespective of the types of its polymorph, Fe₂O₃ (or HFO) embedded in the clay yielded more O_2 than that yielded by the corresponding neat species. The present result also reveals that amorphous Fe₂O₃ (i.e., 3 wt% CL- Fe_2O_3 and HFO) is capable of photocatalytic O_2 evolution. In addition, it also appeared that CL-Fe₂O₃/MT exhibits similar activity to those exhibited by HFO/MT (amorphous phase) at the lower loading amount (3 wt%) and HT- Fe_2O_3/MT (α phase) at the higher loading amount (25 wt%); that is, the photocatalytic activity of a polymorph (α or amorphous) is independent of the preparation procedures. The results in Table 2 may be associated with a refining effect of photocatalyst particles by the use of the clay as a supporter. The particle size of neat CL-Fe₂O₃ and neat HFO was actually identified to be $>10 \ \mu m$ from TEM observation; however, the particle size of neat HT-Fe₂O₃ was ca. 60 nm, which is comparable to that of HT-Fe₂O₃/ MT. In order to investigate the difference between the photocatalytic activities of HT-Fe₂O₃/MT and neat HT-Fe₂O₃, the particle sizes of neat HT-Fe₂O₃ dispersed in deionized water and in an aqueous Ag₂SO₄ solution $(30 \text{ mmol dm}^{-3})$ were measured using a dynamic lightscattering particle-size analyzer (Fig. 5). The particle size of HT-Fe₂O₃ dispersed in deionized water agreed with that estimated from its TEM image; however, that of neat HT-Fe₂O₃ dispersed in the aqueous Ag₂SO₄ solution was ca.

300 nm. Thus, neat HT-Fe₂O₃ was monodispersed in deionized water, while it exhibited aggregations in the Ag_2SO_4 solution. Metal oxide particles easily aggregate in an electrolyte solution due to a decrease in the zeta potential of the particle surfaces (i.e., the aggregation can be induced by the van der Waals force between the particles) [23, 24]. The present result evidently shows that a clay supporter can prevent the aggregation of the photocatalyst particles particularly in an Ag_2SO_4 solution; thus, the photocatalyst loaded in MT exhibits higher activity than the corresponding neat photocatalyst.

Figure 6 shows the time-course of the amount of the O_2 produced in HT-Fe₂O₃/MT (α) and HFO/MT (amorphous), which is measured with respect to the loading amount of the photocatalysts employed. It seemed that the amorphous species exhibits almost the same photocatalytic activity as the α species, as also indicated in Table 2. Moreover, the profiles of O₂ evolution were also independent of the types of polymorphs; that is, the O₂ amount increased with the amount of the photocatalyst employed up to ca. 3 wt% loading and decreased in the larger amount (cf., there was no confirmation of O_2 without irradiation, see Fig. 6). As shown in Fig. 2, it was confirmed for each photocatalyst sample that the size distributions of particles embedded in MT were almost independent of the loading amount. Therefore, it is most probable that the O_2 amount depends on the surface area of photocatalyst particles that varied with the loading amount of a photocatalyst (cf., Fig. 3). The oxidation of water into O_2 needs to take place through four-electron transfer; therefore, from the kinetic aspect, a high concentration of holes on the photocatalyst surface may be essential to the efficient evolution of O_2 . The

Fig. 2 Distributions of the size of Fe_2O_3 particles loaded into MT. **a** CL-Fe₂O₃/MT (\diamond , 25 wt%; **•**, 3 wt%), **b** HT-Fe₂O₃/MT (\diamond , 25 wt%; **•**, 3 wt%), and **c** HFO/MT (\diamond , 8 wt%; **•**, 3 wt%)

present results are indicative of a decrease in the hole concentration with an increase in the number of active sites with the specific surface area (i.e., an interspersion of the active sites).

As has been reported previously, the photocatalytic water oxidation by α -Fe₂O₃ takes place according to the following equations [25].

Fig. 3 Dependence of the specific surface area on the loading amount of photocatalyst (\diamond , CL-Fe₂O₃/MT; \bullet , HT-Fe₂O₃/MT; \star , HFO/MT)

$$H_2O(ads) + h^+ \to OH^{\bullet} + H^+$$
(1)

$$4OH^{\bullet} \rightarrow 2H_2O_2 \rightarrow 2H_2O + O_2 \tag{2}$$

To gain insights into the kinetics of photocatalytic water oxidation, the O₂ evolution in the presence of hydrogen peroxide (H₂O₂) was examined using HT-Fe₂O₃/MT (α) and HFO/MT (amorphous) as the photocatalysts. Figure 7 shows the time-course of the O_2 amount, where the photocatalytic O₂ evolution is conducted in the presence of 100 μ mol dm⁻³ H₂O₂ (cf., the H₂O₂ concentration was controlled to be equal to the OH⁻ concentration at pH 10.0). The addition of H_2O_2 into the photocatalysis systems enhanced the initial rate of O_2 evolution, after which the O_2 evolution rate returned to that in the absence of H₂O₂ (cf., as for almost similar O₂ evolution rate under the distinct pH conditions between Figs. 4 and 7, it may suggest that the physicochemical environment around the photocatalyst sites surrounded by the MT network is independent of the pH of the electrolyte solution employed [26]). The O_2 amount in the initial region (~ 0.25 h) was almost equal to the additive amount of H_2O_2 ; that is, it appeared that the rate for H₂O₂ oxidation is superior to that for water oxidation, irrespective of the kinds of the photocatalysts employed. A similar characteristic has been reported with a photoelectrode of α -Fe₂O₃ thin film [27], in which H₂O₂ is oxidized in tenfold rate of H₂O. The results of Fig. 7 indicate that the water oxidation on the photocatalyst surface is the rate-limiting process (Eq. 1); thus, the surface concentration of holes kinetically affects the photocatalysis of Fe_2O_3 (or HFO) for O_2 evolution (vide supra). As for the optimal photocatalysis under the condition of 3 wt% loading in MT (Fig. 6), the appearance of such an optimal condition in the rate-limiting surface reaction is attributed

Fig. 4 a Diffuse reflectance spectra of 3 wt% CL-Fe₂O₃/MT, 3 wt% HT-Fe₂O₃/MT, and 3 wt% HFO/MT, and b estimation of the band gap energies

to a balance between the number of active sites and the hole concentration per the unit surface area.

The action spectra for O₂ evolution in 3 wt% HT-Fe₂O₃/ MT and 3 wt% HFO/MT were examined (Fig. 8), where the amount of the O₂ produced at each wavelength was measured by irradiating tunable pulse laser for 3 h (cf., the light intensity was always constant at all the wavelengths, i.e., 100 mW cm⁻²). Although the absorption edge of the photocatalysts employed is at around 600 nm (see Fig. 4),

Table 2	Typical	photocatalys	sis data i	for O_2	evolution
---------	---------	--------------	------------	-----------	-----------

Photocatalyst	The amount of the oxygen produced (μL)			
	With MT	Without MT ^a		
3 wt% CL-Fe ₂ O ₃ (amorphous)	71	17		
3 wt% HT-Fe ₂ O ₃ (α)	76	22		
3 wt% HFO (amorphous)	79	11		
25 wt% CL-Fe ₂ O ₃ (α)	21	7		
25 wt% HT-Fe ₂ O ₃ (α)	19	6		
None	0	0		

The O₂ amount was quantified after the irradiation for 8 h

 a The amount of the photocatalyst employed was the same as the corresponding MT-applied system (i.e., 0.6 mg at 3 wt% and 6.7 mg at 25 wt%)

Fig. 5 Distributions of the size of neat HT-Fe₂O₃ particles in deionized water (a, *solid line*) and Ag₂SO₄ solution (b, *dotted line*)

 O_2 was detectable at the wavelengths <550 nm. Recently, it has been reported that the lifetime of a charge transfer transition [from an Fe(III) ion to the nearest neighboring cation] in the range of <550 nm is longer than that of d–d transition (within an Fe(III) ion) in the range of 550 to 750 nm [22]. The present result reveals that amorphous Fe₂O₃ shows the photocatalysis through the same excitation process (i.e., charge transfer transition) as α -Fe₂O₃.

Conclusion

In this study, the photocatalytic activities of Fe_2O_3 and HFO were examined for water oxidation, in terms of the

Fig. 6 Time-course of the amount of the O_2 produced in a HT-Fe₂O₃/MT (\diamond , 1 wt%; \blacksquare , 3 wt%; *, 5 wt%; \Box , 25 wt%; \blacktriangle , 3 wt% without irradiation), and **b** HFO/MT (\diamond , 1 wt%; \blacksquare , 3 wt%; *, 5 wt%; \Box , 8 wt%; \bigstar , 3 wt% without irradiation). Ag₂SO₄ concentration, 30 mmol dm⁻³ (pH = 6.2); light intensity, 357 mW cm⁻²

types of their polymorphs and their loading amounts in a clay compound. The use of an MT matrix as a photocatalyst supporter was effective to the fabrication of Fe₂O₃ (or HFO) nanoparticles, which results in the active and efficient photocatalysis of Fe₂O₃ (or HFO) for O₂ evolution in comparison with the corresponding neat species. Although α -Fe₂O₃ (synthesized by calcining) has usually been applied to a photocatalysis system, particularly through its

Fig. 7 Time-course of the O₂ amount in the presence of H₂O₂ (\Box , 3 wt% HT-Fe₂O₃/MT; *, 3 wt% HFO/MT). Ag₂SO₄ concentration, 30 mmol dm⁻³; H₂O₂ concentration, 100 µmol dm⁻³; pH = 6.2; light intensity, 357 mW cm⁻²

Fig. 8 Action spectra for O₂ evolution in 3 wt% HT-Fe₂O₃/MT (*asterisk*) and 3 wt% HFO/MT (\bullet). The *solid lines* represent the absorption spectra of (a) HFO/MT and (b) HT-Fe₂O₃/MT. When measuring the action spectra for O₂ evolution, the intensity of the monochromatic light was always maintained constant (100 mW cm⁻²), irrespective of the wavelengths employed. Ag₂SO₄ concentration, 30 mmol dm⁻³ (pH = 6.2); irradiation time, 3 h

saturated loading (25 wt%) in MT, it was found that for a low loading of Fe_2O_3 an amorphous phase can be prepared through calcining. The photocatalytic activity of a polymorph (amorphous or α) was essentially independent of the preparation procedures.

In terms of the photocatalyst loading in MT, it was noted that both Fe₂O₃ and HFO show the most efficient photocatalysis at 3 wt% loading, irrespective of the types of their polymorphs (i.e., α and amorphous phases). In both systems, the water oxidation on photocatalyst surface was the rate-limiting process, and moreover, the kinetics was the same magnitude as the polymorphs employed; in other words, the types of the polymorphs do not kinetically affect the rate-limiting surface reaction. Therefore, as for the appearance of such an optimal photocatalysis condition with the O_2 evolution, this was attributable to a balance between the number of active sites and the hole concentration per the unit surface area. This study first demonstrated the photocatalysis of amorphous Fe₂O₃ comparable with that of α -Fe₂O₃. The utilization of an amorphous compound as photocatalyst is with the merit of the simplicity of its preparation. Thus, particularly in view of green chemistry, it is desirable to aim at creating a highly efficient photocatalysis system by means of amorphous nanoparticles.

References

- 1. Fujishima A, Honda K (1972) Nature 238:37
- 2. Leygraf C, Hendewerk M, Somorjai GA (1982) J Phys Chem 86:4484

- 3. Mohanty S, Ghose J (1992) J Phys Chem Solids 53:81
- Dare-Edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) J Chem Soc Faraday Trans 79:2027
- Grätzel M, Kiwi J, Morrison LC (1985) J Chem Soc Faraday Trans 1 81:1883
- 6. Khan SUM, Akikusa J (1999) J Phys Chem B 103:7184
- 7. Duret A, Grätzel M (2005) J Phys Chem B 109:17184
- 8. Kennedy JH, Frese KW (1978) J Electrochem Soc 125:709
- 9. Kay A, Cesar I, Grätzel M (2006) J Am Chem Soc 128:15714
- 10. Yamanaka S, Doi T, Sako S, Hattori M (1984) Mater Res Bull 19:161
- Mori H, Miyoshi H, Takeda K, Yoneyama H, Fujita H (1992) J Mater Sci 27:3197. doi:10.1007/BF01116010
- Miyoshi H, Yoneyama H (1989) J Chem Soc Faraday Trans 85:1873
- 13. Miyoshi H, Mori H, Yoneyama H (1991) Langmuir 7:503
- 14. Zhang ZY, Maggard PA (2007) J Photochem Photobiol A 186:8
- Takahara Y, Kondo JN, Takata T, Lu D, Domen K (2001) Chem Mater 13:1994
- 16. Feng W, Nansheng D (2000) Chemosphere 41:1137
- 17. Langford CH, Wong SM, Underdown AW (1981) Can J Chem 59:181
- 18. Gualtieri A, Venturelli P (1999) Am Mineral 84:895
- 19. Strehlow WH, Cook EL (1973) J Phys Chem Ref Data 2:163
- 20. Matsumoto Y (1996) J Solid State Chem 126:227
- 21. Zboril R, Mashlan M (2002) Chem Mater 14:969
- He YP, Miao YM, Li CR, Wang SQ, Cao L, Xie SS, Yang GZ, Zou BS, Burada C (2005) Phys Rev B 71:125411.1
- Esumi K, Yamada K, Sugawara T, Meguro K (1986) Bull Chem Soc Jpn 59:697
- 24. Enzweiler J, Joekes I (1992) J Colloid Interface Sci 150:559
- Gondal MA, Hameed A, Yamani ZH, Suwaiyan A (2004) Appl Catal A Gen 268:159
- 26. Fripiat JJ, Stone WEE (1978) Phys Chem Liq 7:349
- 27. Itoh K, Bockris JOM (1984) J Appl Phys 56:874